Lesson 020 Probability Plots

Friday, October 27

$$
\Lambda
$$

3，ロフ・• 59．12，42826．99，0，0，0，0 35．64，50656．8，0，
$115.94,67905.07$
$115.94,66938$.
$0192.49,86421$

Probability Plots

- To test whether a particular distribution is followed, we should plot our data.
- Histograms are likely to be biased or challenging to draw accurate conclusions with.
- Instead, we rely on probability plots.
- Note: these are more commonly called QQ-plots outside of this course.

Using Quantiles to Define a Distribution

- Suppose that data are drawn from a particular distribution, with quantiles $\eta(p)$.
- In the sample we expect that:
- Median $\approx \eta(0.5)$
- $Q 1 \approx \eta(0.25)$
- $Q 3 \approx \eta(0.75)$
- In general, all sample quantiles should approximately equal the corresponding theoretical values.

Plotting Sample versus Theoretical Quantiles

- If we call the sample quantiles $\tilde{\eta}(p)$ then imagine we make a plot of $\tilde{\eta}(p)$ versus $\eta(p)$.
- If the distribution is correct, we expect $\tilde{\eta}(p) \approx \eta(p)$
- In graphical terms, this corresponds to $y \approx x$.
- If the plot ends up with an approximately straight line, evidence of a good fit.

Normal Q-Q Plot

Normal Q-Q Plot

True or False: The following probability plot displays evidence of normality.

0\%
0\%

Normal Q-Q Plot

True or False: The following probability plot displays evidence of normality.
$0 \% \quad 0 \%$

True or False: The following probability plot displays evidence of normality.

Computing Quantiles

- We saw how to compute theoretical quantiles for a given distribution

$$
p=\int_{-\infty}^{\eta(p)} f(x) d x
$$

- For sample quantiles, we need a different procedure.
- If data are ordered smallest to largest, this roughly corresponds to the sample quantiles.

Sample Quantiles

- Suppose we observe n data points, and order them $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$.
- $x_{(j)}$ corresponds to the j th smallest value
- In this course we will take

$$
x_{(j)}=\tilde{\eta}(p) \text { with } p=\frac{j-0.5}{n}
$$

Example

- If we observe $n=10$ values what sample quantile is $x_{(1)}$?

$$
\frac{1-0.5}{10}=\frac{0.5}{10}=0.05, \text { or the } 5 \text { th percentile. }
$$

- Which value corresponds to the 87 th percentile?

$$
0.87=\frac{x-0.5}{10} \Longrightarrow x=8.75
$$

- We only consider the theoretical percentiles observed in the sample.

Example

- Suppose we observe $\{-1.17,-2.30,-1.25\}$, what will our points for the probability plot be?
- $x_{(1)}: \frac{1-0.5}{3}=0.1 \dot{6}$
- $x_{(2)}: \frac{2-0.5}{3}=0.5$
. $x_{(3)}: \frac{3-0.5}{3}=0.8 \dot{3}$

Example

- Suppose we observe $\{-1.17,-2.30,-1.25\}$, what will our points for the probability plot be?

$$
\begin{aligned}
& x_{(1)}=\widetilde{\eta}(0.1 \dot{6})=-2.30 \leftrightarrow \eta(0.1 \dot{6})=Z_{0.16}=-0.97 \\
& x_{(2)}=\widetilde{\eta}(0.5)=-1.25 \leftrightarrow \eta(0.5)=Z_{0.5}=0 \\
& x_{(3)}=\widetilde{\eta}(0.8 \dot{3})=-1.17 \leftrightarrow \eta(0.8 \dot{3})=-Z_{0.16}=0.97
\end{aligned}
$$

In a sample of 10 observations, $x_{(4)}$ corresponds to which percentile?
$\eta(0.4)$ 0\%
$\eta(0.35)$
$\eta(0.04)$
$\eta(0.035)$

If there are $n=15$ observations, which of the following theoretical quantities will not correspond to a value on the probability plot?
$\eta(0.9 \dot{6})$
$\eta(0.0 \dot{3})$
$\eta(0.5)$
$\eta(0.9 \dot{2})$

Suppose that we observe $\{-5,-2,0,1,4,8,15\}$. What is $\tilde{\eta}(0.5)$?

0

1

4

Does not exist in the sample.

Considerations for Probability Plots

- If the sample size is small, the plots can be challenging to accurately read
- The last example was from a normal distribution but would have had a very messy plot.
- More of "an art" than "a science".

Normal Q-Q Plot

Normal Q-Q Plot

Normal Q-Q Plot

True or False: The following probability plot displays evidence of normality.
$0 \% \quad 0 \%$

True or False: The following probability plot displays evidence of normality.
$0 \% \quad 0 \%$

Non-Standard Normal

- What if we have $X \sim N\left(\mu, \sigma^{2}\right)$ and want to construct a probability plot, but μ and σ^{2} are unknown?
- Recall that $\eta(p)=\sigma Z_{p}+\mu$.
- If $\tilde{\eta}(p) \approx \eta(p)=\sigma Z_{p}+\mu$ then this provides the ability to consider any linear relationship as evidence.
- Also provides a way to estimate σ and μ.

A probability plot of a dataset versus the standard normal displays a fairly straight linear pattern, with a slope of 3 and a y-intercept of -2 . What can we say about the distribution of the data?

It is likely to be approximately $N(0,1)$.

It is likely to be approximately $N(-2,3)$.

It is likely to be approximately $N(-2,9)$.

It is likely to be approximately $N(3,4)$.

None of the above

